
8 The Delphi Magazine Issue 72

Preparing For A Terminal
Server Environment
by Jani Järvinen

If you have been following the
technological talks during the

past few years, you have probably
heard of Windows Terminal Ser-
vices. This allows you to convert a
Windows NT or Windows 2000
system to a multi-user server capa-
ble of running multiple desktops at
the same time. In this article, I will
introduce you to the key concepts
and help you in programming for
this environment.

From time to time, history seems
to repeat itself. Many years ago,
applications were running on the
server, and the client computers
were considered to be terminals.
Such a terminal didn’t have much
processing power on its own, but it
had a screen, a keyboard and a
network connection (or a simple
RS232 serial cable).

Today, the personal computer
landscape is vastly different. Even
the average PC sitting on the office
desk is powerful enough to process
video, handle audio and display
rich user interfaces. Processing
power allows us to manipulate lots
of data at once, and fast peripher-
als handle swift communications
with the outside world.

From the user’s and developer’s
perspectives, personal computers
can be fun, since they are fast, flexi-
ble and entertaining. But, from the
management point of view, PCs can
easily create many problems. Dif-
ferent hardware and software
configurations can become a main-
tenance nightmare. Even if hard-
ware is cheap and software close
to free, the cost of supporting a
regular PC, and its user suffering
from the Monday morning syn-
drome, can simply be too high.

To help reduce the total cost of
ownership (TCO), people like Ora-
cle’s Larry Ellison have proposed
network PCs: simple terminal-like
devices that would be able to run
web and Java applications. Unfor-
tunately, these devices haven’t
become commonplace, at least not
yet. Although developing web
applications with Delphi is
straightforward (as you have seen
on the pages of this magazine),
converting existing applications to
the web is often simply too slow.

Enter Terminal Services
Although web-based applications
and network computers can be

efficient solutions
to certain types
of problem, they do
not necessarily fit
into a regular Win-
dows environment:
as we all know,
Windows applica-
tions are still
number one on the
corporate desktop.

The idea of Windows Terminal
Services is to move processing
from the client desktop to the
server, while allowing the user to
interact with the application just
as if it were a normal client applica-
tion. The Terminal Services tech-
nology transfers mouse and
keyboard input from the client to
the server, and screen images from
the server back to the client.

When I was first introduced to
the concept, my immediate reac-
tion was that Terminal Services
was just another piece of software
that allows remote administration,
like pcAnywhere, Reach Out or
NetOp. Compared to Terminal Ser-
vices, the idea of these tools is
similar, but the implementation is
completely different.

Conventional remote control
software hooks up to the user’s
desktop and allows control of the
remote computer using the local
keyboard and mouse. On the other
hand, Terminal Services allows
you to run multiple interactive
Windows sessions on the same
computer. For example, both John
and Jane could have an interactive
session running on the same
system. And just like remote con-
trol software, both John and Jane
can be anywhere in the world and
still be able to run the applications
they need.

Technically, a Terminal Services
enabled computer can also have a
regular console session in addition
to the remote sessions for John
and Jane. However, most com-
monly a Terminal Services enabled
computer runs on the corporate
computing centre, without even a
monitor connected, since all oper-
ations, including administration,
can be done over the wire.

Before a user can connect to a
Terminal Server computer
remotely, he or she needs a small
client application. The purpose of

➤ Figure 1:
Installing
Terminal
Services allows
multiple users
to run their
applications.

August 2001 The Delphi Magazine 9

this client application is to capture
mouse and keyboard activity on
the client and send the screen
images from the server to the
client. Because of this operation
model, it doesn’t actually matter
what operating system the client
runs. For instance, a user running
Macintosh or Linux could easily
hook up to a Windows 2000 server
and run the applications he or she
needs.

The previously mentioned abil-
ity to mix and match operating
systems isn’t the only benefit of
Terminal Services. Other key bene-
fits include the ability to run heavy
applications even on an old 486
client (since all the processing
happens on the server) and the
support for multiple connection
methods (from modem to direct
LAN connection). Plus, an applica-
tion needs to be installed only once
on the server to become available
to all client computers.

Background Information
At this point you are probably
interested in knowing how Termi-
nal Services works. Traditional
Windows NT and Windows 2000
systems are single-user operating
systems, meaning that only one
user can execute applications on
the system. When Terminal Ser-
vices is enabled on the system,
multiple users can connect to the
server and share its memory, CPU,
disk and other resources.

When talking about Terminal
Services, it is important to know
the players. The US-based com-
pany Citrix, Inc is the father of a
Windows-based Terminal Services
solution. Citrix’s current product
family is named MetaFrame, the
newest version being MetaFrame
XP, short for MetaFrame eXtended
Platform (as opposed to eXPeri-
ence in Windows XP).

Citrix was the first vendor to
develop a multi-user Windows
kernel (MultiWin, see Figure 1),
and as Microsoft noted the success
of the Citrix products, it released
Windows NT 4.0 Terminal Server
Edition. The Microsoft implemen-
tation is based on Citrix’s work,
and, for example, the management
tools look quite similar on both

products. As you would guess,
Citrix provides additional features
and, for example, supports many
other client operating systems
than just Windows systems.

With the introduction of Win-
dows 2000, Microsoft decided to
put Terminal Server features into
Windows 2000 Server without addi-
tional cost. This move has greatly
increased the demand for applica-
tions compatible with Terminal
Services. Note that in this article,
I’m using the term Terminal
Services to mean both Microsoft
and Citrix solutions, both on Win-
dows NT 4.0 and Windows 2000. If I
need to make a distinction, I’ll do
so explicitly. TSE is a common
abbreviation of Terminal Services
Environment.

From a technical point of view,
installing Terminal Services on a
system modifies the internal kernel
components so that they become
aware of multiple users. Each con-
nection to the Terminal Services
creates a new session. You could
consider this session exactly iden-
tical to a normal console session
except that the desktop of the user
is not shown on the screen of the
server, but instead on the client.

When a user connects to a
Terminal Server, the system cre-
ates a session for the user. When
the user launches an application,

the forms and graphics the appli-
cation displays are drawn to an
internal screen buffer. Whenever
this buffer changes, the changes
are transmitted over the network
to the client.

Since the application is running
on the server, it is very important
to understand that applications
share the resources on the server.
For example, RAM, disk, network
and CPU resources are shared by
all sessions and by all applications
running in them. For instance, if
one application suddenly starts to
consume 100% of the CPU time,
there isn’t much left for other
applications.

Jumping to the client side, it is
essential to know how the remote
application interacts with the
applications running natively on
the client. Of course, not all client
computers might be able to run
applications on their own (they
might not even have a hard disk),
but most commonly, a Terminal
Services client computer is simply
a Windows-based PC.

Frequently, when a user initiates
a connection to a Terminal Server
system, he or she is presented with
a desktop inside a window. After
logging on, the Terminal Server
system loads the desktop of the
user based on the user name. The
results look like Figure 2. That is,

➤ Figure 2: A desktop on a desktop using Citrix MetaFrame.

10 The Delphi Magazine Issue 72

the user sees a desktop in a desk-
top, so to say.

For the experienced user, this
notion of showing a desktop on a
desktop is great, but the average
user can become confused with
two almost identical Start menus
and file systems. Of course, the
remote desktop can be set to
occupy the whole screen, but
things can still get complicated.

To solve the problem, Citrix has
developed a feature called seam-
less window integration, in which
an application (say, Notepad) runs
on the client desktop just like it
would have been started as a
normal client application. With
this feature, the remote desktop is
not shown, leaving only the Note-
pad window visible. This feature is
not available with the Microsoft
solution.

Application
Design Considerations
So far, I’ve only discussed how
Terminal Services works. As a
software developer, you must also
learn how Terminal Services
affects your applications. The
good news is that most applica-
tions work inside a Terminal
Services Environment ‘as is’. How-
ever, if you want your application
to behave nicely in such situations,
there are many points to consider.

Since I only have limited space
available, I suggest that you also
read the documentation available
in the Microsoft Platform SDK,
viewable at http://msdn.microsoft.
com. This documentation contains
detailed information on the
subject: I will concentrate on key
points.

First and foremost, you should
try to conserve resources when
your application is running in a
Terminal Server session (I will

soon show you how to detect this).
Since everything happening on the
screen must be transferred from
the server to the client, you should
minimize the action occurring on
your forms. For example, if you are
using graphical feedback, such as
AVI videos, during long operations,
it might be better to come up with a
less intensive graphics effect. Simi-
larly, you should disable splash
screens and other entertaining fea-
tures. Even the blinking of a text
caret causes network traffic!

In addition to graphics, you
should also minimize your require-
ment for sound effects. Unless your
application is an audio manipulat-
ing application, it is best to simply
disable all audio effects in your
application if it is running inside a
Terminal Server session. Leaving
audio on in your application does
not cause the remote server to
emit the sounds, since the Termi-
nal Services solution is intelligent
enough to transfer the audio data
to the client. Since audio data con-
sumes lots of bits, all this comes
down to saving network band-
width. Also, audio might simply be
disabled on the client without your
application knowing it.

Basic features such as clipboard
access should also be considered.
Your application running on the
Terminal Server shares the clip-
board of the client computer, as
opposed to the remote computer.
This means that all clipboard oper-
ations must be transferred over
the wire, so you should avoid
copying lots of data to and from the
clipboard.

Note that clipboard integration
is very important for the end-user.
For example, John could run an
instance of Notepad locally on his
computer and Word remotely. It is
easy for him to copy and paste
information between these two
applications, since nothing special
needs to be done.

How printing is implemented is
another important issue to under-
stand. Since applications running
inside Terminal Services try to
emulate regular client applications
as much as possible, a feature
called client printing is supported.
Client printing means, effectively,
that a remote application is able to
print to a printer attached directly
to the client computer.

If your application does lots of
printing, you might wish to opti-
mize printing, since every printing
command must be transferred
from the server to the client if
printing to a client printer. If print-
ing to a printer attached to the
Terminal Server, the network is
not utilized.

Just like printers, Terminal Ser-
vices also supports serial devices
attached to the client computer.
For example, if Jane is using a digi-
tizing board attached to her client
computer, the remote application
should be able to use it normally.
However, some serial devices are
special and require tweaking and
tuning to make them work in a TSE.

Files, Registry And
Kernel Object Names
Access to files and the registry
requires thought as well. Since the
file system on the Terminal Server
is shared by all applications run-
ning on it, you must be cautious
about not overwriting data that
other instances of your applica-
tion might be using. For instance, if
your application has the habit of
using a temporary file with the
same name every time, you might
run into problems when multiple
instances of your applications are
running on the same system.

To help ensure applications are
robust, a Terminal Server session
always redirects the TEMP environ-
ment variable to point to a unique
directory. For example, if TEMP usu-
ally points to C:\TEMP, Terminal
Services automatically modifies it
to point to C:\TEMP\1, C:\TEMP\2
and so on depending on the ses-
sion number. So, if you are using
temporary files, it is good practice
to use the TEMP environment vari-
able to get the path to the tempo-
rary directory. The helper function

Function GetEnvironmentVariable(Name : String) : String;
Var I : Integer;
Begin
Result := '(cannot determine)';
I := Windows.GetEnvironmentVariable(PChar(Name),nil,0);
If (I > 0) Then Begin
SetLength(Result,I-1);
Windows.GetEnvironmentVariable(PChar(Name),PChar(Result),I);

End;
end;

➤ Listing 1: Retrieving the value
of an environment variable.

12 The Delphi Magazine Issue 72

in Listing 1 allows you to easily get
the contents of any environment
variable.

Other than files, registry access
is the Achilles heel of many appli-
cations. If your application stores
information in the HKEY_CURRENT_
USER hive, the settings are only
available to a single user. If another
user logs on to the system with
other credentials, Terminal Ser-
vices switches the contents of the
HKEY_CURRENT_USER hive to match
the settings of the other user. If
your application relies on finding
key information in this hive, your
application might not work in the
Terminal Services environment.

To remedy the situation, it is
best to store global computer set-
tings (such as pathnames) in HKEY_
LOCAL_MACHINE and only user-
related settings (such as window
positions) in HKEY_CURRENT_USER.
Note that this is a really common
mistake to make: even Borland has
neglected this with Delphi. Delphi 6
fixes this problem, however.

For advanced applications,
Win32 kernel object names can
also be an issue. When an applica-
tion is running regularly on the
client without the presence of
Terminal Services, kernel object
names share one global
namespace. So, it is easy create a
named kernel object, for instance
an event, and make sure all
instances of the application share

the same event object. Or the pres-
ence of such an object could mean
that an instance of your applica-
tion is already running. It would
then be easy to terminate the
second instance, forcing the user
to have only a single instance of
your application.

Inside a Terminal Services ses-
sion, things are different. Each ses-
sion has its own private kernel
object namespace. I mean that if
your application running under
John’s session creates a named
kernel object, another instance of
your application running inside
Jane’s session cannot see the
object.

In NT 4.0, there wasn’t much you
could do to solve the problem. On
the other hand, Windows 2000 pro-
vides a neat solution to the prob-
lem by introducing global and local
namespaces. By default, an appli-
cation running inside a Terminal
Services session uses the local
namespace. Thus, it can only see
the objects created inside that
session.

However, by prefixing a kernel
object name with Global\, the
application can specify that the
global namespace should be used.
Similarly, the Local\ prefix can
be used to specify the local
namespace. If your application is
running on a Windows 2000 system
without Terminal Services, the
prefix is ignored. Remember to be
careful with older Windows ver-
sions, since the backslash charac-
ter is invalid in NT 4.0, Windows 9x
and Me.

Terminal
Services APIs
If you want to
fine-tune your
application for
Terminal Ser-
vices, or you
wish to develop
applications to
manage Termi-
nal Services, you
need to use
the Terminal
Services APIs.
Most of these API
functions are
implemented in

WTSAPI32.DLL, and they are pre-
fixed with the letters WTS, for
example WTSEnumerateSessions.

Using these APIs is simple,
although the header files that ship
with Delphi don’t contain the nec-
essary header translations.
Instead, you must either manually
translate the headers from C code
or obtain the translations ready-
made. The JEDI Project (www.
delphi-jedi.org) has done such a
translation, but I’ve also translated
several important API functions
for the purposes of the example
application. To do the translations
yourself, you need to obtain the
header file WTSAPI32.H, among
other files. It is easiest to get these
by downloading the Platform SDK
package from Microsoft.

The WTS functions constantly
refer to server and session han-
dles. These handles are used to
identify a server running Terminal
Services and a session inside that
server. To specify the current
server, you can always use the
constant WTS_CURRENT_SERVER_
HANDLE, defined as zero in
WTSAPI32.H. Similarly, the current
session can be referred to with the
WTS_ CURRENT_SESSION constant.

The example application I wrote
for this article is named Terminal
Services Information. The purpose
of this application is to retrieve
system information about the
computer on which the applica-
tion is running, and also to demon-
strate the use of the WTS APIs. The
user interface of the application is
divided into four tabs, as shown in
Figure 3. Note that to run the
sample application, you will need
at least Windows NT 4.0 Terminal
Server Edition or Windows 2000
Server. The application won’t start
in other environments due to
missing kernel features.

The first tab, System Information,
displays miscellaneous details
about the current computer. For
example, this includes memory
information, networking settings
and printer information. I won’t be
going through all of the code since
it would require at least one more
article! However, I would like to
draw your attention to the first
information displayed by the

➤ Figure 3: The sample
application is able to display
system information.

14 The Delphi Magazine Issue 72

application. The code is shown in
Listing 2.

As you can see, the code first
checks to see if the current operat-
ing system is Windows 2000 (or
later) and, if so, calls the
GetSystemMetrics API function.
The parameter for this function
is the constant SM_REMOTESESSION.
It is not defined in the source files
that come with Delphi, but you can
always use the following
translation (from WinUser.h):

Const
SM_REMOTESESSION = $1000;

If the return value from
GetSystemMetrics is non-zero, the
result means that the current
application is running inside a
Terminal Server session. If the
return value is zero, the applica-
tion is being run using conven-
tional methods. Note that this test
only works with Windows 2000.
With NT 4.0, there isn’t a docu-
mented method for testing if the
application runs inside a terminal
session.

However, if you are using NT 4.0,
you can look at the registry keys
under this location:

HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\
Control\
Product Options

(see Figure 4). If the ProductSuite
key is set to Terminal Server, it is
quite likely that your application is
in fact running inside a terminal
session.

Getting Session Information
The second tab of the sample appli-
cation shows a screen like the one
in Figure 5. With the buttons on
this tab, you are able to retrieve
session information given a pro-
cess ID and also list the sessions on
the current server. When a process
is running, it has its own unique
process ID, which is guaranteed to
be unique while the process is run-
ning. Similarly, each terminal ses-
sion has a session ID. To determine
in which session a process is run-
ning given its process ID, you can
call the ProcessIdToSessionId API
function. It is defined as:

Function ProcessIdToSessionId(
ProcessID : Integer;
{ from WinBase.h }
Var SessionID : Integer) :
Bool; StdCall;
External Kernel32
Name ‘ProcessIdToSessionId’;

To fill in the list of active sessions,
the example application uses the
API function WTSEnumerateSessions.
This function can only be called
if Terminal Services has been
installed, or when running inside a
terminal session. Otherwise the
function fails and GetLastError
returns ERROR_APP_WRONG_OS. This is
common to other WTS API
functions as well.

If the call to WTSEnumerateSess-
ions is successful, the function
returns a pointer to an array of
structures that can be used to
identify the sessions. The struc-
ture itself identifies three things:
the session ID, the window station
name, and finally the session state

Const
BoolArray : Array[False..True] of String = ('No','Yes');

Function GetTerminalServicesInfo : String;
Var B : Boolean;
Begin
Result := 'Running under Terminal Services: ';
If ((Win32Platform = VER_PLATFORM_WIN32_NT) And

(Win32MajorVersion >= 5)) Then Begin { Windows 2000 or later }
B := (GetSystemMetrics(SM_REMOTESESSION) <> 0);
Result := Result+BoolArray[B];

End Else
Result := Result+'(cannot determine)';

End;

procedure TTSIMainForm.SessionRefreshTimerTimer(
Sender: TObject);

Var
S : String;
P : PSessionInfoArray;
I,J : Integer;
TI : Pointer;

begin
If (Not RefreshSessions.Checked) Then Exit;
{ update session states }
If (Not WTSEnumerateSessions(WTS_CURRENT_SERVER_HANDLE,
0,1,P,I)) Then Begin
SessionRefreshTimer.Enabled := False;
PageControl1.ActivePageIndex := 1;
TSSessions.SetFocus;
RaiseLastWin32Error;

End;
TSSessions.Items.Clear;
For J := 0 to I-1 do Begin
{$R-}
TI := TypeInfo(TConnectState);
S := GetEnumName(TI,Integer(P^[J].State));
With TSSessions.Items.Add do Begin
Caption := IntToStr(P^[J].SessionID);
SubItems.Add(P^[J].WindowStation);
SubItems.Add(S);

End;
{$R+}
End;
WTSFreeMemory(P);

end;

➤ Listing 2: Detecting if running inside a Terminal Services session.

➤ Listing 3: Retrieving session
information with
WTSEnumerateSessions.

➤ Figure 4: Trying to detect
Windows NT 4.0 TSE requires
checking the registry.

August 2001 The Delphi Magazine 15

information. The window station is
the internal name of the (invisible)
USER environment containing the
desktop and the clipboard, among
other things. Session state is an
enumeration: it specifies whether
the session is currently active,
waiting for a connection, or
initializing, and so on.

The array returned by WTSEnum-
erateSessions is a variable-sized
array, so you need to be careful
about the compiler range checks
when accessing the array. For
example, I personally always keep
range checks on ({$R+}) during
development, because this allows
me to catch annoying bugs faster.
There’s no excuse for not using $R+
since it is very easy to enable and
disable range checks if needed, as
you can see from Listing 3.

Once you have finished with the
array returned by WTSEnumerate-
Sessions, use the WTSFreeMemoryAPI
function to free the memory buffer.
Do not use the memory manage-
ment functions that Delphi pro-
vides to free the buffer.

The example application also
contains two buttons that can be
used to interact with sessions. The
first button, Show Session Informa-
tion, is able to display more infor-
mation about a session that can be
retrieved with a call to WTSEnum-
erateSessions. The code uses the
WTSQuerySessionInformation API
function, which returns a lot of
information given a server handle
and a session ID. Just as with

the WTSEnumerateSessions call, the
buffer returned by WTSQuerySess-
ionInformation must be freed with
a call to WTSFreeMemory.

The second button executes the
code in Listing 4. By clicking the
button, you are able to send a mes-
sage to the selected session. The
given message then pops up on the
console of the session. By calling
WTSSendMessage, you are able to

send quick noti-
fications to
users. For
example, if you
are building an
administrative
utility, you
could easily
enumerate the
available ses-
sions and send
a message to
each stating
that the system

is going to be rebooted in 10
minutes. Neat, I’d say.

Listing Processes
Since a Terminal Server is able to
serve multiple users at the same
time, there can be potentially
dozens of processes running in the
system at any given moment.
Being able to list these processes
can be helpful if you are building
administrative tools for Terminal
Services or you want to know how
many instances of your applica-
tion are currently running, assum-
ing that the name of your EXE is
unique enough.

The WTS API also provides a
function called WTSEnumeratePro-
cesses which allows you to get a
list of running processes. The code
that demonstrates how to use this
function is shown in Listing 5. Just
as with WTSEnumerateSessions,
WTSEnumerateProcesses returns a
buffer that contains a variable-
sized array of process information.
Each running process is identified

procedure TTSIMainForm.SendMsgToSessionClick(Sender: TObject);
Var
Session : LongWord;
Title : String;
AMessage : String;
I : Integer;

begin
If (TSSessions.Selected = nil) Then Begin
ShowMessage('Please select a session first.');
Exit;

End;
Session := StrToInt(TSSessions.Selected.Caption);
Title := 'Hello Session #'+IntToStr(Session);
AMessage := 'It is now: '+DateTimeToStr(Now);
If (Not WTSSendMessage(WTS_CURRENT_SERVER_HANDLE,Session,
PChar(Title),Length(Title),PChar(AMessage),Length(AMessage),MB_OK,
0,I,False)) Then RaiseLastWin32Error;

ShowMessage('Message sent.');
end;

procedure TTSIMainForm.RefreshProcessesClick(Sender: TObject);
Var
P : PProcessInfoArray;
I,J : Integer;

begin
If (Not WTSEnumerateProcesses(WTS_CURRENT_SERVER_HANDLE,0,1,P,I)) Then
RaiseLastWin32Error;

ProcessList.Items.Clear;
ProcessCount.Caption := IntToStr(I)+' processes shown';
For J := 0 to I-1 do Begin
{$R-}
With ProcessList.Items.Add do Begin
Caption := IntToStr(P^[J].ProcessID);
SubItems.Add(IntToStr(P^[J].SessionID));
If (P^[J].ProcessName = nil) Then SubItems.Add('-')
Else SubItems.Add(P^[J].ProcessName);
SubItems.Add(SIDToUserName(P^[J].UserSID));

End;
{$R+}
End;
WTSFreeMemory(P);

end;

➤ Listing 4: Send a message to a remote session.

➤ Listing 5: Using
WTSEnumerateProcesses.

➤ Figure 5:
Displaying
session
information.

16 The Delphi Magazine Issue 72

with the fields in the WTS_PROCESS_
INFO structure. I’ve translated this
into a record of type TProcessInfo.

The interesting thing about this
record is that one of the fields
specifies the security identifier
(SID) of the user running the pro-
cess. The security identifier is a
way for Windows NT and Windows
2000 to identify a user. To convert
an SID to a user name, you can use
the LookupAccountSid API function,
declared in WINDOWS.PAS.

To convert an SID to a user name
string, I’ve written the helper func-
tion SIDToUserName. This function is
shown in Listing 6. Note that a null
(nil) SID means the special SYSTEM
account.

Conclusions
Preparing your applications to run
in a Terminal Services environ-
ment requires more thought than
coding. Since most applications
run without modifications quite
nicely in such an environment,

there is no need for costly repro-
gramming given that your applica-
tion is ‘well behaved’. Certain
special applications, most proba-
bly those which are accessing
hardware, are the ones that will
require most work. Of course, I’m
not saying that other kinds of appli-
cations would not require any
modifications: you need to experi-
ment and see what work is needed.

Both Citrix and Microsoft have
done great work in making applica-
tions run as smoothly as possible
inside a Terminal Server session.
For example, access to drive let-
ters works almost the same com-
pared to an application running
locally (see Figure 6).

Similarly, things like sound, the
clipboard and printing work just
the same as on a local computer.
Database access, for example, can
work without any modifications, as
proved by the example application
and the Execute Query button on
the Resources tab (see Figure 7).

If you want to fine-tune your
application for a Terminal Services
environment, you can use the WTS
API functions. I have demon-
strated how to use these functions
to enumerate sessions and pro-
cesses, retrieve session informa-
tion and send messages to
sessions. As you saw in the code
listings, using these functions is
actually quite simple once you
have the necessary C header trans-
lations available. Check out the
source code for the example appli-
cation, included on the companion
disk, for more details.

If you are really keen on the WTS
APIs, you have the possibility to
drill down even further. For exam-
ple, the virtual channel APIs allow
you to directly control what is put
on the wire when the client and
server computers need to commu-
nicate. However, that is well worth
a new article.

Until next time!

Jani Järvinen works as a technical
support person for Borland prod-
ucts. He is a Microsoft Certified
Professional (MCP) and a Citrix
Certified Administrator (CCA).
Email him at janij@dystopia.fi

➤ Figure 6: The client's C: drive becomes a
V: drive inside a remote session.

➤ Figure 7: Creating Win32 kernel objects and
executing SQL queries.

Function SIDToUserName(SID : PSID) : String;
Var
Name : Array[0..256] of Char;
NLen : Cardinal;
Dom : Array[0..256] of Char;
DLen : Cardinal;
SType : Cardinal;

begin
If (SID = nil) Then Result := 'SYSTEM'
Else Begin
NLen := SizeOf(Name);
DLen := SizeOf(Dom);
If (Not LookupAccountSid(nil,SID,Name,NLen,Dom,DLen,SType)) Then
Result := '(unknown)'

Else Result := StrPas(Name);
End;

end;

➤ Listing 6: Converting an SID to a user name.

	Enter Terminal Services
	Background Information
	Application Design Considerations
	Files, Registry And Kernel Object Names
	Terminal Services APIs
	Getting Session Information
	Listing Processes
	Conclusions

